On Information Theoretic Bounds for SGD
Read OriginalThis technical blog post discusses a theoretical approach to understanding the generalization of Stochastic Gradient Descent (SGD) using information theory. It explains a thought experiment linking the mutual information between model parameters and the training dataset to generalization performance, and outlines how KL divergences are used to derive formal bounds for SGD.
Comments
No comments yet
Be the first to share your thoughts!
Browser Extension
Get instant access to AllDevBlogs from your browser
Top of the Week
1
2
Using Browser Apis In React Practical Guide
Jivbcoop
•
2 votes
3
Better react-hook-form Smart Form Components
Maarten Hus
•
2 votes
4
Top picks — 2026 January
Paweł Grzybek
•
1 votes
5
In Praise of –dry-run
Henrik Warne
•
1 votes
6
Deep Learning is Powerful Because It Makes Hard Things Easy - Reflections 10 Years On
Ferenc Huszár
•
1 votes
7
Vibe coding your first iOS app
William Denniss
•
1 votes
8
AGI, ASI, A*I – Do we have all we need to get there?
John D. Cook
•
1 votes
9
Quoting Thariq Shihipar
Simon Willison
•
1 votes
10
Dew Drop – January 15, 2026 (#4583)
Alvin Ashcraft
•
1 votes