Data Science and Agile (What Works, and What Doesn't)
Read OriginalThis article explores the intersection of Agile project management and data science work. It discusses which aspects of Agile (like sprint planning, task definition, and retrospectives) work well with the engineering side of data science and which parts are less compatible with its research and innovation components. The author promises a follow-up with specific frameworks and adjustments for effective implementation.
Comments
No comments yet
Be the first to share your thoughts!
Browser Extension
Get instant access to AllDevBlogs from your browser
Top of the Week
1
2
Using Browser Apis In React Practical Guide
Jivbcoop
•
2 votes
3
Better react-hook-form Smart Form Components
Maarten Hus
•
2 votes
4
Top picks — 2026 January
Paweł Grzybek
•
1 votes
5
In Praise of –dry-run
Henrik Warne
•
1 votes
6
Deep Learning is Powerful Because It Makes Hard Things Easy - Reflections 10 Years On
Ferenc Huszár
•
1 votes
7
Vibe coding your first iOS app
William Denniss
•
1 votes
8
AGI, ASI, A*I – Do we have all we need to get there?
John D. Cook
•
1 votes
9
Quoting Thariq Shihipar
Simon Willison
•
1 votes
10
Dew Drop – January 15, 2026 (#4583)
Alvin Ashcraft
•
1 votes