About Feature Scaling and Normalization
Read OriginalThis technical article provides an in-depth explanation of feature scaling and normalization in machine learning. It covers the concepts of standardization (Z-score normalization) and Min-Max scaling, detailing when and why to use each method. It includes practical implementation using Python's scikit-learn library, discusses the impact on algorithms like PCA and gradient descent, and explains why tree-based methods are scale-invariant.
Comments
No comments yet
Be the first to share your thoughts!
Browser Extension
Get instant access to AllDevBlogs from your browser
Top of the Week
1
Quoting Thariq Shihipar
Simon Willison
•
2 votes
2
Using Browser Apis In React Practical Guide
Jivbcoop
•
2 votes
3
Better react-hook-form Smart Form Components
Maarten Hus
•
2 votes
4
Top picks — 2026 January
Paweł Grzybek
•
1 votes
5
In Praise of –dry-run
Henrik Warne
•
1 votes
6
Deep Learning is Powerful Because It Makes Hard Things Easy - Reflections 10 Years On
Ferenc Huszár
•
1 votes
7
Vibe coding your first iOS app
William Denniss
•
1 votes
8
AGI, ASI, A*I – Do we have all we need to get there?
John D. Cook
•
1 votes
9
Dew Drop – January 15, 2026 (#4583)
Alvin Ashcraft
•
1 votes