Deep Learning Experiments and Claims
Read Original本文深入讨论了在深度学习研究论文中,如何通过严谨的实验设计来支持或强化所提出的主张(claims)。文章以BatchNorm等经典论文为例,分析了仅证明结果有效与过度声称原理之间的常见问题,并介绍了从系统级实验、消融实验到深入分析的不同实验层次。作者强调,应根据实验证据的强度来恰当地表述主张,避免将直觉或推测当作事实陈述,这对于提高研究的严谨性和可信度至关重要。
Deep Learning Experiments and Claims
Comments
No comments yet
Be the first to share your thoughts!
Browser Extension
Get instant access to AllDevBlogs from your browser
Top of the Week
1
Quoting Thariq Shihipar
Simon Willison
•
2 votes
2
Using Browser Apis In React Practical Guide
Jivbcoop
•
2 votes
3
Top picks — 2026 January
Paweł Grzybek
•
1 votes
4
In Praise of –dry-run
Henrik Warne
•
1 votes
5
Deep Learning is Powerful Because It Makes Hard Things Easy - Reflections 10 Years On
Ferenc Huszár
•
1 votes
6
Vibe coding your first iOS app
William Denniss
•
1 votes
7
AGI, ASI, A*I – Do we have all we need to get there?
John D. Cook
•
1 votes
8
Dew Drop – January 15, 2026 (#4583)
Alvin Ashcraft
•
1 votes