Using {drake} for Machine Learning
Read OriginalThis article details the author's experience adopting the {drake} R package for managing complex machine learning workflows. It compares their approach to a previously published workflow, emphasizing how drake solves issues like dependency management, caching intermediate results, and ensuring reproducibility in projects that span months. The focus is on building a coherent, production-ready model pipeline.
Comments
No comments yet
Be the first to share your thoughts!
Browser Extension
Get instant access to AllDevBlogs from your browser
Top of the Week
1
Quoting Thariq Shihipar
Simon Willison
•
2 votes
2
Top picks — 2026 January
Paweł Grzybek
•
1 votes
3
In Praise of –dry-run
Henrik Warne
•
1 votes
4
Deep Learning is Powerful Because It Makes Hard Things Easy - Reflections 10 Years On
Ferenc Huszár
•
1 votes
5
Vibe coding your first iOS app
William Denniss
•
1 votes
6
AGI, ASI, A*I – Do we have all we need to get there?
John D. Cook
•
1 votes
7
Dew Drop – January 15, 2026 (#4583)
Alvin Ashcraft
•
1 votes